๐ŸŽฏ MobileNet ํ™œ์šฉ ํ•™์Šต ๋ฐฉ๋ฒ•

1. Feature Extraction (ํŠน์ง• ์ถ”์ถœ)

# ๋ฐฑ๋ณธ ์™„์ „ ๊ณ ์ •, ํ—ค๋“œ๋งŒ ํ•™์Šต
for param in model.features.parameters():
    param.requires_grad = False

2. Fine-tuning (๋ฏธ์„ธ์กฐ์ •)

# ์ „์ฒด ๋ชจ๋ธ ํ•™์Šต (๋‚ฎ์€ ํ•™์Šต๋ฅ )
optimizer = optim.Adam(model.parameters(), lr=1e-5)

3. Progressive Fine-tuning (์ ์ง„์  ๋ฏธ์„ธ์กฐ์ •)

# ๋‹จ๊ณ„๋ณ„๋กœ ๋ ˆ์ด์–ด ์–ธํ”„๋ฆฌ์ฆˆ
# 1๋‹จ๊ณ„: ํ—ค๋“œ๋งŒ โ†’ 2๋‹จ๊ณ„: ๋งˆ์ง€๋ง‰ ๋ช‡ ๋ธ”๋ก โ†’ 3๋‹จ๊ณ„: ์ „์ฒด

4. Discriminative Learning Rates

# ๋ ˆ์ด์–ด๋ณ„๋กœ ๋‹ค๋ฅธ ํ•™์Šต๋ฅ  ์ ์šฉ
optimizer = optim.Adam([
    {'params': model.features.parameters(), 'lr': 1e-5},
    {'params': model.classifier.parameters(), 'lr': 1e-3}
])

5. Knowledge Distillation (์ง€์‹ ์ฆ๋ฅ˜)

# ํฐ ๋ชจ๋ธ(teacher)์˜ ์ง€์‹์„ MobileNet(student)์— ์ „๋‹ฌ
loss = student_loss + distillation_loss

6. Multi-task Learning (๋ฉ€ํ‹ฐํƒœ์Šคํฌ)

# ํ•˜๋‚˜์˜ ๋ฐฑ๋ณธ์œผ๋กœ ์—ฌ๋Ÿฌ ํƒœ์Šคํฌ ๋™์‹œ ํ•™์Šต
class MultiTaskMobileNet(nn.Module):
    def __init__(self):
        self.backbone = mobilenet_v2(pretrained=True).features
        self.classifier1 = nn.Linear(1280, num_classes1)  # ๋ถ„๋ฅ˜
        self.classifier2 = nn.Linear(1280, num_classes2)  # ๊ฐ์ •์ธ์‹

7. Pruning + Fine-tuning (๊ฐ€์ง€์น˜๊ธฐ)

# ๋ถˆํ•„์š”ํ•œ ์—ฐ๊ฒฐ ์ œ๊ฑฐ ํ›„ ์žฌํ•™์Šต
import torch.nn.utils.prune as prune
prune.global_unstructured(parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.3)

8. Quantization-aware Training (์–‘์žํ™” ํ•™์Šต)

# 8bit ์–‘์žํ™”๋ฅผ ๊ณ ๋ คํ•œ ํ•™์Šต
model = torch.quantization.prepare_qat(model)

9. Neural Architecture Search (NAS)

  • ์ž๋™์œผ๋กœ ์ตœ์  ์•„ํ‚คํ…์ฒ˜ ํƒ์ƒ‰
  • MobileNet ๋ธ”๋ก์„ ๋ฒ ์ด์Šค๋กœ ์ƒˆ๋กœ์šด ๊ตฌ์กฐ ์ƒ์„ฑ

10. Domain Adaptation

# ๋„๋ฉ”์ธ ๊ฐ„ ์ฐจ์ด๋ฅผ ์ค„์ด๋Š” ์ ๋Œ€์  ํ•™์Šต
domain_classifier = nn.Sequential(...)

11. Few-shot Learning

# ์ ์€ ๋ฐ์ดํ„ฐ๋กœ ๋น ๋ฅด๊ฒŒ ์ ์‘
# Meta-learning, Prototypical Networks ๋“ฑ

12. Self-supervised Pre-training

# ๋ผ๋ฒจ ์—†๋Š” ๋ฐ์ดํ„ฐ๋กœ ๋จผ์ € ํ•™์Šต
# SimCLR, BYOL ๋“ฑ์˜ ๋ฐฉ๋ฒ•

13. Ensemble Methods

  • ์—ฌ๋Ÿฌ MobileNet ๋ชจ๋ธ ์กฐํ•ฉ
  • ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์œผ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ๋“ค

14. Continual Learning (์ง€์† ํ•™์Šต)

  • ๊ธฐ์กด ์ง€์‹ ์œ ์ง€ํ•˜๋ฉฐ ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ ํ•™์Šต
  • Catastrophic forgetting ๋ฐฉ์ง€

์šฉ๋„๋ณ„ ๋ถ„๋ฅ˜:

  • ์†๋„ ์ค‘์‹ฌ: Pruning, Quantization
  • ์ •ํ™•๋„ ์ค‘์‹ฌ: Ensemble, Knowledge Distillation
  • ๋ฐ์ดํ„ฐ ๋ถ€์กฑ: Few-shot, Self-supervised
  • ๋‹ค์ค‘ ๋„๋ฉ”์ธ: Multi-task, Domain Adaptation
  • ์ง€์†์  ์—…๋ฐ์ดํŠธ: Continual Learning

์ƒํ™ฉ๊ณผ ๋ชฉ์ ์— ๋”ฐ๋ผ ์ด๋Ÿฐ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋“ค์„ ์กฐํ•ฉํ•ด์„œ ์‚ฌ์šฉํ•˜๋Š” ๊ฒŒ ์ผ๋ฐ˜์ ์ด์—์š”!

์ฝ”๋ฉ˜ํŠธ

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค