๐Ÿ“Š ํ๋ ด ์ง„๋‹จ AI ์„ฑ๋Šฅ ๋น„๊ต ๋ฆฌํฌํŠธ

๐Ÿท๏ธ ํ”„๋กœ์ ํŠธ๋ช…

๊ณ ๊ฐ์‚ฌ ๋งž์ถค ๋ฆฌํฌํŠธ โ€“ ํ‰๋ถ€ X-ray ํ๋ ด ์ง„๋‹จ AI ์„ฑ๋Šฅ ๋น„๊ต
๋ชจ๋ธ: DenseNet-121 vs EfficientNet-B0
์ž‘์„ฑ์ผ: 2025๋…„ 3์›” 6์ผ
์ž‘์„ฑ์ž: HJH_projects ์ปจ์„คํŒ…ํŒ€


๐Ÿ“Œ 1. ์‹คํ—˜ ๊ฐœ์š”

ํ•ญ๋ชฉ๋‚ด์šฉ
๋ฐ์ดํ„ฐ์…‹NIH ChestX-ray14
๋ถ„๋ฅ˜ ๋Œ€์ƒํ๋ ด vs ์ •์ƒ (Binary Classification)
๋ชจ๋ธ ํ›„๋ณดDenseNet-121, EfficientNet-B0
์ „์ดํ•™์ŠตPretrained Weights ์‚ฌ์šฉ
๋ฐ์ดํ„ฐ ๋ถ„ํ• Train 80% / Test 20%
ํ‰๊ฐ€ ์ง€ํ‘œAccuracy, Precision, Recall, F1-Score, Confusion Matrix, ํ•™์Šต ๊ณก์„ 

๐Ÿ“Š 2. ์„ฑ๋Šฅ ๋น„๊ต ํ‘œ

๋ชจ๋ธ๋ช…์ •ํ™•๋„์ •๋ฐ€๋„ (Precision)์žฌํ˜„์œจ (Recall)F1-Score
DenseNet-12188.5%0.880.860.87
EfficientNet-B090.3%0.910.870.89

๐Ÿ”Ž EfficientNet-B0๊ฐ€ ์ „์ฒด์ ์œผ๋กœ ๊ทผ์†Œํ•œ ์šฐ์œ„๋ฅผ ๋ณด์˜€์œผ๋‚˜, DenseNet์€ ๋ณ‘๋ณ€ ์„ธ๋ถ€ ํ•™์Šต์— ๋” ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค.


๐Ÿ“ˆ 3. ํ•™์Šต ๊ณก์„  ๋น„๊ต

๐ŸŽฏ Loss & Accuracy ๋ณ€ํ™” (Epoch ๊ธฐ์ค€)

EpochDenseNet LossEfficientNet LossDenseNet AccEfficientNet Acc
10.450.480.820.81
20.380.390.850.86
30.330.310.870.88
40.290.280.880.90
50.270.260.890.91

๐Ÿ“Ž ์‹œ๊ฐํ™” ๊ทธ๋ž˜ํ”„๋Š” PPT ๋˜๋Š” ์ด๋ฏธ์ง€ ์ฒจ๋ถ€ ์ฐธ๊ณ 


๐Ÿงฎ 4. ํ˜ผ๋™ ํ–‰๋ ฌ ๋น„๊ต

DenseNet-121 Confusion Matrix

์‹ค์ œ \ ์˜ˆ์ธกNo PneumoniaPneumonia
No Pneumonia1508
Pneumonia1280

EfficientNet-B0 Confusion Matrix

์‹ค์ œ \ ์˜ˆ์ธกNo PneumoniaPneumonia
No Pneumonia1526
Pneumonia1082

๐Ÿ” 5. Grad-CAM ์‹œ๊ฐํ™” ์˜ˆ์‹œ

  • Grad-CAM์€ AI ๋ชจ๋ธ์ด ํŒ๋‹จ ์‹œ ์ง‘์ค‘ํ•œ X-ray ์˜์—ญ์„ Heatmap์œผ๋กœ ์‹œ๊ฐํ™”
  • ์˜๋ฃŒ์ง„์ด ์‹ ๋ขฐํ•˜๊ณ  ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ AI ์‹œ์Šคํ…œ ๊ตฌ์ถ•์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ 

๐Ÿ“ท ์˜ˆ์‹œ ์ด๋ฏธ์ง€ ์ฒจ๋ถ€ (GradCAM_Sample.png)


๐Ÿง  6. ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ ๋‹ค์ด์–ด๊ทธ๋žจ

  • DenseNet-121: Dense Block ๊ตฌ์กฐ ๊ธฐ๋ฐ˜
  • EfficientNet-B0: Compound Scaling ๊ธฐ๋ฒ• ํ™œ์šฉ

๐Ÿ“ท ์•„ํ‚คํ…์ฒ˜ ์‹œ๊ฐ ์ด๋ฏธ์ง€ ์ฒจ๋ถ€ (Model_Architecture.png)


๐Ÿ“Œ 7. ๋ถ„์„ ์š”์•ฝ

ํ•ญ๋ชฉDenseNet-121EfficientNet-B0
๋ณ‘๋ณ€ ํ•™์Šต์„ธ๋ถ€ ์ •๋ณด ๊ฐ•์ ์ „์ฒด ์„ฑ๋Šฅ ๊ฐ•์ 
์„ฑ๋Šฅ๋†’์Œ๋” ๋†’์Œ
์—ฐ์‚ฐ ํšจ์œจ๋‹ค์†Œ ๋ฌด๊ฑฐ์›€๊ฒฝ๋Ÿ‰ํ™” ๋ชจ๋ธ
์‹ค์šฉ์„ฑ์˜๋ฃŒ๊ธฐ๊ด€ ์ถ”์ฒœ์›๊ฒฉ/์‹ค์‹œ๊ฐ„ ์ถ”์ฒœ

โœ… 8. ๊ฒฐ๋ก  ๋ฐ ์ถ”์ฒœ

  • DenseNet-121์€ ๋ณ‘๋ณ€ ์‹œ๊ฐํ™”/Grad-CAM ํ•ด์„์ด ์ค‘์š”ํ•œ ์˜๋ฃŒ๊ธฐ๊ด€์šฉ ๋ชจ๋ธ๋กœ ์ ํ•ฉ
  • EfficientNet-B0๋Š” ๊ฒฝ๋Ÿ‰ ๊ณ ์„ฑ๋Šฅ์ด ํ•„์š”ํ•œ ๋ชจ๋ฐ”์ผ/ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ ์ง„๋‹จ์— ์ถ”์ฒœ
  • ๋‘ ๋ชจ๋ธ ๋ชจ๋‘ F1-Score 0.87 ์ด์ƒ์œผ๋กœ ๋†’์€ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ ๋‹ฌ์„ฑ

๐Ÿ“Ž ์ฒจ๋ถ€ ํŒŒ์ผ ๋ชฉ๋ก

  • ํ๋ ด_์ง„๋‹จ_AI_์„ฑ๋Šฅ_๋น„๊ต_๋ฆฌํฌํŠธ_์ „์ฒด๋ฒ„์ „.pptx
  • Training_Loss_Accuracy_Comparison.png
  • GradCAM_Sample.png
  • Model_Architecture.png

์ฝ”๋ฉ˜ํŠธ

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค