๐Ÿง  EfficientNetV2-M ๊ธฐ๋ฐ˜ ํ๊ธฐ๋ฌผ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ํ”„๋กœ์ ํŠธ ๋…ธํŠธ

1. ๐ŸŽฏ ํ”„๋กœ์ ํŠธ ๊ฐœ์š”

  • ์ฃผ์ œ: ํ๊ธฐ๋ฌผ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ AI ๋ชจ๋ธ ๊ฐœ๋ฐœ
  • ๋ชฉํ‘œ: ํ๊ธฐ๋ฌผ ์ด๋ฏธ์ง€๋ฅผ organic(์œ ๊ธฐ๋ฌผ)๊ณผ recyclable(์žฌํ™œ์šฉ ๊ฐ€๋Šฅ)๋กœ ๋ถ„๋ฅ˜
  • ํ™œ์šฉ ๋ชจ๋ธ: EfficientNetV2-M
  • ๊ตฌํ˜„ ํ™˜๊ฒฝ: NVIDIA H200 GPU

2. ๐Ÿ’ก ๋ชจ๋ธ ์„ ํƒ ๋ฐ ๋น„๊ต

๋ชจ๋ธ๋ช…ImageNet Top-1 AccuracyํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜ํŠน์ง•
EfficientNetV2-S84.6%24M๊ฒฝ๋Ÿ‰, ์†๋„ ์šฐ์ˆ˜
โœ… EfficientNetV2-M85.1%55M์ •ํ™•๋„ยท์†๋„ ๊ท ํ˜•
ConvNeXt-B85.8%89M์—ฐ์‚ฐ๋Ÿ‰ ๋งŽ์Œ
ViT-B/1681.8%86M๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ํ•„์š”
  • ์ตœ์ข… ์„ ํƒ: EfficientNetV2-M
    • ์ •ํ™•๋„ 85.1% ์ด์ƒ
    • H200 ํ™˜๊ฒฝ์—์„œ ๋ณ‘๋ ฌ ์—ฐ์‚ฐ ์ตœ์ ํ™”
    • ์ ๋‹นํ•œ ๊ทœ๋ชจ๋กœ ๊ณผ์ ํ•ฉ ์œ„ํ—˜ ์ค„์ด๋ฉด์„œ ์„ฑ๋Šฅ ํ™•๋ณด

3. ๐Ÿงช ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ ๋ฐ ์ฆ๊ฐ•

๐Ÿ“‚ ํด๋” ๊ตฌ์กฐ

/dataset
  โ”œโ”€โ”€ train/
  โ”‚     โ”œโ”€โ”€ organic/
  โ”‚     โ””โ”€โ”€ recyclable/
  โ””โ”€โ”€ val/
        โ”œโ”€โ”€ organic/
        โ””โ”€โ”€ recyclable/

๐Ÿ“ˆ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ์ „๋žต

  • RandomFlip
  • RandomRotation
  • RandomZoom
  • RandomTranslation
  • Brightness, Contrast
  • ์ถ”๊ฐ€ ๊ฐ€๋Šฅ: CutMix, MixUp, RandAugment

4. โš™๏ธ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ ์š”์•ฝ

Mixed Precision ์„ค์ • (H200 ์ตœ์ ํ™”)

from tensorflow.keras.mixed_precision import set_global_policy
set_global_policy('mixed_float16')

๋ชจ๋ธ ๊ตฌ์„ฑ ์š”์•ฝ

from tensorflow.keras.applications import EfficientNetV2M
base_model = EfficientNetV2M(include_top=False, weights='imagenet', input_shape=(256, 256, 3))

# ์ „์ดํ•™์Šต ๊ตฌ์กฐ
x = tf.keras.layers.GlobalAveragePooling2D()(base_model.output)
x = tf.keras.layers.Dense(128, activation='relu')(x)
x = tf.keras.layers.Dropout(0.3)(x)
output = tf.keras.layers.Dense(1, activation='sigmoid', dtype='float32')(x)

model = tf.keras.Model(inputs=base_model.input, outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

5. ๐Ÿ“Š ์„ฑ๋Šฅ ๋ชฉํ‘œ ๋ฐ ํ‰๊ฐ€ ์ง€ํ‘œ

๋ชจ๋ธTrain AccVal AccNotes
EfficientNetV2-M97.5%95.6%fine-tuning ์™„๋ฃŒ ์‹œ ์˜ˆ์ƒ
  • ์ง€ํ‘œ: Accuracy, Precision, Recall, F1 Score
  • ์ถ”๊ฐ€ ๊ถŒ์žฅ: Confusion Matrix, ROC Curve ์‹œ๊ฐํ™”

6. ๐Ÿ›  ์‚ฌ์šฉ ๋„๊ตฌ ๋ฐ ํ™˜๊ฒฝ

  • ํ”„๋ ˆ์ž„์›Œํฌ: TensorFlow 2.x + Keras
  • ํ•˜๋“œ์›จ์–ด: NVIDIA H200 GPU
  • ๊ฐœ๋ฐœ ํ™˜๊ฒฝ: Google Colab Pro / JupyterLab / VS Code
  • ํˆด:
    • TensorBoard: ํ•™์Šต ์‹œ๊ฐํ™”
    • Matplotlib: ์„ฑ๋Šฅ ๋น„๊ต ๊ทธ๋ž˜ํ”„
    • FastAPI: ํ–ฅํ›„ ์„œ๋น™์šฉ API ๊ตฌ์„ฑ ๊ฐ€๋Šฅ

7. ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ ํŒ€ ์šด์˜ & ๋ฐœํ‘œ ๊ตฌ์„ฑ ์š”์†Œ

ํ•„์ˆ˜ ๋ฐœํ‘œ ํ•ญ๋ชฉ

  • Why ์ด ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š”๊ฐ€ (์ •๋‹น์„ฑ ๋ถ€์—ฌ)
  • ๋ฐ์ดํ„ฐ ์˜ˆ์‹œ ๋ฐ ์ฆ๊ฐ• ๋ฐฉ์‹
  • ๋ชจ๋ธ ๋น„๊ต ๋ฐ ์„ฑ๋Šฅ ์ •๋ฆฌ
  • ํŒ€์›๋ณ„ ์—ญํ• 
  • ์‚ฌ์šฉํ•œ ๋„๊ตฌ ๋ฐ ๋กœ๊ณ 
  • ๋ฐฐ์šด ์  & ํ–ฅํ›„ ๊ณ„ํš

๐Ÿ”š ๋‹ค์Œ ๋‹จ๊ณ„ ์ œ์•ˆ

  • ํ•™์Šต ์ง„ํ–‰ ํ›„ ๋กœ๊ทธ ๋ฐ ๊ทธ๋ž˜ํ”„ ์ •๋ฆฌ
  • confusion matrix ๋ฐ class activation map ์‹œ๊ฐํ™”
  • FastAPI ๊ธฐ๋ฐ˜ ์˜ˆ์ธก API ๊ฐœ๋ฐœ (์˜ต์…˜)

์ฝ”๋ฉ˜ํŠธ

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค